Synthesis and Biological Activity of Optically Active Phenylbutenoid Dimers

Jeonghyun Chu, ${ }^{+}$Dong Hoon Suh,,\neqGehyung Lee, ${ }^{\S}$ Ah-Reum Han, ${ }^{\perp}$ Song Wha Chae, ${ }^{\perp}$ Hwa Jeong Lee, ${ }^{\perp}$ Eun-Kyoung Seo, ${ }^{*, \perp}$ and Hee-Jong Lim ${ }^{*, \S}$
${ }^{\dagger}$ Department of Chemistry, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701, Korea
${ }^{\ddagger}$ Department of Chemistry, Sogang University, 1 Sinsu-dong, Mapo-gu, Seoul 121-742, Korea
${ }^{\S}$ Bio-Organic Science Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yusung-gu, Daejeon 305-600, Korea
${ }^{\perp}$ College of Pharmacy, Ewha Womans University, 11-1 Daehun-dong, Seodaemun-gu, Seoul 120-750, Korea

Supporting Information

Abstract

The total synthesis of optically active phenylbutenoid dimers 1, 3, and ent- $\mathbf{3}$ is described. The key step to access optically active cyclohexene rings was achieved by Diels-Alder reaction of chiral acryloyloxazolinone 9 and phenylbetadiene 10.

Several phenylbutenoid dimers including 3-aryl-4-(E)-styrylcyclohexenes $\mathbf{1 - 6}$ and 1,2-bis $((E)$-styryl) cyclobutane were isolated from the rhizomes of a tropical Zingiber cassumunar, which has been used for the treatment of asthma, gastrointestinal distress, and motion sickness. ${ }^{1}$ All of the phenylbutenoid dimers were isolated as racemic mixtures, implying that they were produced by a nonenzymatic process. Structure elucidations of these compounds were based on analyses of their 1D and 2D NMR and mass spectroscopic data, and configurations of the groups attached to the cyclohexene ring of $\mathbf{1}$ and 3 were deduced to be cis and trans, respectively, on the basis of the ${ }^{1} \mathrm{H}$ NMR coupling constants. ${ }^{1 \mathrm{~d}}$

1: $R=H$
2: $\mathrm{R}=\mathrm{OMe}$

3: $\mathrm{R}_{1}=\mathrm{OMe} \quad \mathrm{R}_{2}=\mathrm{H} \quad \mathrm{R}_{3}=\mathrm{H}$
4: $\mathrm{R}_{1}=\mathrm{OMe} \mathrm{R}_{2}=\mathrm{OMe} \mathrm{R}_{3}=\mathrm{H}$
5: $\mathrm{R}_{1}=\mathrm{OMe} \quad \mathrm{R}_{2}=\mathrm{H} \quad \mathrm{R}_{3}=\mathrm{OM}$
6: $\mathrm{R}_{1}=\mathrm{OH} \quad \mathrm{R}_{2}=\mathrm{H} \quad \mathrm{R}_{3}=\mathrm{H}$
There has been a growing interest in phenylbutenoid dimers due to their diverse biological activities. For example, (\pm)-3-(3,4-dimethoxyphenyl)-4-[(Z)-3,4-dimethoxystyryl]cyclohex-1-ene
(1) has inhibitory activity for NO production induced by LPS in mouse macrophages. ${ }^{2}$ Also, (\pm)-3-(3,4-dimethoxyphenyl)-4-$[(E)$-3,4-dimethoxystyryl $]$ cyclohex-1-ene (3) has been reported to inhibit P-glycoprotein (P-gp) activity in a P-gp-overexpressing human breast cancer cell line, ${ }^{3}$ cyclooxygenase-2 (COX-2) activity, ${ }^{1 f, 4}$ and cell proliferation in several human tumor cell lines. ${ }^{5}$ One limitation in biological evaluation of phenylbutenoid dimers is their low natural abundance. Thus, for precise analysis of structure-activity relationships, a new and general synthesis of optically active phenylbutenoid dimers became necessary. In an effort to further study the biological activities of these molecules, we were interested in the synthesis of optically active $3 S$-(3,4-dimethoxyphenyl)-4S-\{ (E)-3,4-dimethoxystyryl $\}$ cyclohex-1-ene (1), 3S-(3,4-dimethoxyphenyl)-4R-$\{(E)$-3,4-dimethoxystyryl $\}$ cyclohex-1-ene (3), and 3R-(3,4-dime-thoxyphenyl)-4S-\{(E)-3,4-dimethoxystyryl $\}$ cyclohex-1-ene (ent-3).

Thermal $[4+2]$ dimerization of 1-phenylbutadiene was reported to give cis- and trans-phenylbutenoid dimers in ratio of 1.4:1, ${ }^{6}$ and dimerization of 1-(3,4-dimethoxyphenyl)butadiene (10) yielded the cis-isomer (1) in 23% yield as a racemic mixture. ${ }^{7}$ In our synthetic strategy, optically active phenylbutenoid dimers 1 and 3 would arise from ($1 R, 2 S$)-2-(3,4-dimethoxyphenyl)

[^0]
Scheme 1. Retrosynthetic Analysis

cyclohex-3-enecarbaldehyde (7), which in turn could be derived from the optically active compound (S)-4-benzyl-3-(($1 R, 2 S$)-2-(3,4-dimethoxy phenyl)cyclohex-3-enecarbonyl)oxazolidin-2-one (8) via Diels-Alder cyclization between (S)-3-acryloyl-4-benzyloxazolidin-2-one (9) and 1-(3,4-dimethoxyphenyl)butadiene (10) with high regio- and stereoselectivity (Scheme 1). ${ }^{8}$ The starting compound 9 was prepared from (S)-4-benzyloxazolidin2 -one by the reported method. ${ }^{9}$ Compound 10 was obtained from 3,4-dimethoxyaldehyde by modification of the previous method in 57% yield. ${ }^{\text {1c }}$ Diethylaluminum chloride mediated asymmetric cycloaddition reaction of 9 and $\mathbf{1 0}$ afforded 8 as a single stereoisomer in quantitative yield. Reduction of 8 with lithium borohydride in THF afforded the corresponding compound ((1R,2S)-2-(3,4-dimethoxyphenyl) cyclohex-3-enyl)methanol (11), which was then oxidized to 7 by Swern oxidation. Compound 7 was converted to $3 S$-(3,4-dimethoxyphenyl)$4 S$ - $\{(E)$-3,4-dimethoxystyryl $\}$ cyclohex-1-ene (1) by Horner-Wadsworth-Emmons condensation with dimethyl 3,4-dimethoxybenzylphosphonate (12) in 50% yield with high E / Z selectivity in a ratio of 95:5 (Scheme 2). ${ }^{10}$ For the synthesis of trans-isomer 3, compound 7 was epimerized with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH to thermodynamically more stable 13. However, when olefination of 13 was carried out under the same conditions, $3 S$ -(3,4-dimethoxyphenyl)-4R-\{(E)-3,4-dimethoxystyryl $\}$ cyclohex-1-ene (3) was obtained in 24% yield.

Therefore, an alternative route involving stereoselective vinylstannylation from 13 and Stille coupling to improve the yield of 3 was attempted. Compound 13 was treated with PPh_{3} and carbon tetrabromide to afford the dibromide, then converted to 4-((1S,6S)-6-ethynylcyclohex-2-enyl)-1,2-dimethoxybenzene (14) by Corey Fuch alkyne synthesis. ${ }^{11}$ Hydrostannylation of 14 with tributyltin hydride led to an $80 \% E$ and $20 \% Z$ mixture of tributyl $((E / Z)-2-((1 S, 2 S)-2$-(3,4-dime-thoxyphenyl)cyclohex-3-enyl)vinyl)stannane (15). ${ }^{12}$ The E / Z mixture (15) was used directly without separation, as a single purification was planned for the final step of the synthesis. Stille coupling of $\mathbf{1 5}$ with 3,4-dimethoxyphenyl triflate (16) led to a 4:1 mixture of $3 S$-(3,4-dimethoxyphenyl)-4R-\{(E)-3,4
dimethoxystyryl $\}$ cyclohex-1-ene (3) and 3S-(3,4-dimethoxy-phenyl)-4R-\{(Z)-3,4 dimethoxystyryl $\}$ cyclohex-1-ene (17) in 59% and 15% isolated yields, respectively, after separation by HPLC using a chiral OD-H column. ${ }^{13}$ With the same synthetic route described above, $3 R$-(3,4-dimethoxyphenyl)-4S-\{(E)-3,4-dimethoxystyryl $\}$ cyclohex-1-ene (ent-3) was prepared starting with (R)-3-acryloyl-4-benzyloxazolidin-2-one (ent-7) obtained by modification of the previous method. ${ }^{8}$ Optically active phenylbutenoid dimers 3 , ent- 3 , and 17 were evaluated for their P-gylocoprotein inhibitory effect in a P-gp-overexpressing multidrug-resistant (MDR) human breast cancer cell line, MCF-7/ADR, using a previously reported protocol. ${ }^{3}$ Phenylbutenoids 3 and 17, with $3 S, 4 R$ configurations, were found to have more potent P-gp inhibitory activity compared to ent-3, with $3 R, 4 S$ configuration (Table 1). Further biological studies of these optically active phenylbutenoid dimers will be reported elsewhere.

In conclusion, phenylbutenoid dimer $\mathbf{1}$ and the structurally related congeners 3, 17, and ent-3 have been successfully synthesized from key intermediate 8 by employing asymmetric Diels-Alder reactions with Evans chiral oxazolidinone 9. The successful synthesis of phenylbutenoid dimers via a route that readily gives entry to analogues will allow for further investigations of their pharmacological properties and structure-activity relationships.

■ EXPERIMENTAL SECTION

General Experimental Procedures. All reagents were purchased from Aldrich Chemical Co. and Alfa Aesar Chemical Co. and used as obtained unless otherwise noted. RPMI 1640 cell culture medium and antibiotic-antimycotic agent were obtained from Invitrogen (Carlsbad, CA, USA), and fetal bovine serum (FBS) was from Hyclone (South Logan, UT, USA). Daunomycin, verapamil, and sulfo-rhodamine B (SRB) were supplied by Sigma-Aldrich (St. Louis, MO, USA). Anhydrous THF and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were prepared by a solvent purification system. Melting points were obtained on a Thomas Scientific melting point apparatus and are uncorrected. Flash chromatography was carried out using silica gel

Scheme 2. Synthesis of Optically Active Phenybutenoid Dimers 1, 3, and ent-3 ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) $\mathrm{Et}_{2} \mathrm{AlCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 99 \%$; (b) $\mathrm{LiBH}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{THF}, 0^{\circ} \mathrm{C} 78 \%$; (c) DMSO, (ClCO) ${ }_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ to rt, 94%; (d) 12, n - $\mathrm{BuLi}, \mathrm{THF},-78^{\circ} \mathrm{C}, 10 \mathrm{~min}$, then $7,-78^{\circ} \mathrm{C}$ to $\mathrm{rt}, 2 \mathrm{~h}, 50 \%$; (e) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, \mathrm{rt}, 73 \%$; (f) $\mathrm{PPh}_{3}, \mathrm{CBr}_{4}, \mathrm{CH}_{2} \mathrm{Cl} 2,0{ }^{\circ} \mathrm{C}, 99 \%$; (g) $n-\mathrm{BuLi}$, THF, $-78^{\circ} \mathrm{C}, 90 \%$; (h) $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, toluene, $80^{\circ} \mathrm{C}$, 83%; (i) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, NMP, $90^{\circ} \mathrm{C}, 74 \%$.

Table 1. Effects of Phenylbutenoid Dimers on Daunomycin (DNM) Cytotoxicity ${ }^{a}$

compound	$\mathrm{IC}_{50}(\mu \mathrm{M})$
daunomycin	14.33 ± 1.39
verapamil	1.90 ± 0.30
$3 S$-(3,4-dimethoxyphenyl)-4R-\{(E)-3, 4-dimethoxystyryl $\}$ cyclohex-1-ene (3)	1.44 ± 0.48
$3 S$-(3,4-dimethoxyphenyl)-4R-\{(Z)-3, 4-dimethoxystyryl $\}$ cyclohex-1-ene (17)	1.74 ± 0.33
$3 R$-(3,4-dimethoxyphenyl)-4S-\{(E)-3, 4-dimethoxystyryl $\}$ cyclohex-1-ene (ent-3	3.19 ± 1.08
${ }^{a} \mathrm{IC}_{50}$ values of DNM were determined in incubation with three phenylbutenoids and tration of $50 \mu \mathrm{M}$. Each data point is expre different experiments. Daunomycin: neg tive control.	ells after 2 h final conce SD from th rapamil: po

60 (230-400 mesh) using various solvent mixtures. High-performance liquid chromatography (HPLC) was carried out on an Acme 9000 HPLC system (Younglin, Korea) equipped with a Chiragel OD-H column ($250 \mathrm{~mm} \times 10 \mathrm{~mm}$ i.d., Daicel Chemical Industries, Tokyo, Japan). Optical rotation measurements were performed on a Rudolph Autopol IV (automatic polarimeter). NMR spectra were recorded at 300 or
$400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right.$ NMR $)$ and 75 or $100 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right.$ NMR), referenced to an internal standard (TMS) or residual solvent protons, and signals are reported in ppm (δ). High-resolution mass spectra (HRMS) were recorded on an AEI MS3074 spectrometer and Agilent 6220 Accu-rate-Mass TOF LC/MS system. Circular dichroism measurements were performed using a Jasco J-715 CD/ORD spectropolarimeter.
(S)-4-Benzyl-3-[(1R,2S)-2-(3,4-dimethoxyphenyl)cyclohex-3-enecarbonyl)]oxazolidin-2-one (8). To a solution of (S)-3-acryloyl-4-benzyloxazolidin-2-one $(9)^{9}(1.30 \mathrm{~g}, 5.62 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added sequentially 1-(3,4-dimethoxyphenyl)butadiene (10) (1.50 g, 7.87 mmol) and diethylaluminum chloride $(4.37 \mathrm{~mL}, 7.87 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The resulting solution was stirred for an additional 5 min at $-78{ }^{\circ} \mathrm{C}$ and then poured into a stirred solution of $1 \mathrm{~N} \mathrm{HCl}(40 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times 50 \mathrm{~mL})$. The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated. The crude product was purified by crystallization from EtOAc and hexane to give $\mathbf{8}(2.37 \mathrm{~g}, 99 \%)$ as a white solid: mp $132{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}+307(c 1.0, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.31-7.23(3 \mathrm{H}, \mathrm{m}), 7.12-7.09(2 \mathrm{H}, \mathrm{m}), 6.78-6.75(3 \mathrm{H}, \mathrm{m})$, $5.98-5.94(1 \mathrm{H}, \mathrm{m}),, 5.78-5.73(1 \mathrm{H}, \mathrm{m}), 4.55-4.47(1 \mathrm{H}, \mathrm{m}), 4.15-4.03$ $(4 \mathrm{H}, \mathrm{m}), 3.86(3 \mathrm{H}, \mathrm{s}), 3.77(3 \mathrm{H}, \mathrm{s}), 2.98-2.92(1 \mathrm{H}, \mathrm{m}), 2.35-2.05$ $(4 \mathrm{H}, \mathrm{m}), 1.81-1.75(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,150.8$, 146.0, 145.7, 133.2, 130.8, 126.6, 126.4, 126.1, 124.7, 124.6, 119.1, 110.5, 108.2, 74.9, 74.5, 74.1, 53.4, 53.4, 53.0, 41.2, 39.0, 35.7, 21.5, 18.0; HREIMS $m / z 421.1888[\mathrm{M}]^{+}\left(\right.$calcd for $\left.\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{5}, 421.1889\right)$.
(1R,2S)-2-[(3,4-Dimethoxyphenyl) cyclohex-3-enyl)]methanol (11). To a suspension of $\mathrm{LiBH}_{4}(535 \mathrm{mg}, 24.6 \mathrm{mmol})$ in $\mathrm{THF}(28 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(7 \mathrm{~mL})$ was added $8(3.45 \mathrm{~g}, 8.2 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$. The reaction mixture was stirred for 5 h at $0^{\circ} \mathrm{C}$, diluted with $0.1 \mathrm{~N} \mathrm{HCl}(100 \mathrm{~mL})$, and extracted with EtOAc $(2 \times 100 \mathrm{~mL})$. The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL} \times 2)$, dried over MgSO_{4}, and concentrated. The crude product was purified by flash column chromatography (EtOAc/hexane, 1:3-1:2) to give $11(1.6 \mathrm{~g}, 78 \%)$ as a colorless oil: $[\alpha]_{\mathrm{D}}^{25}+242(c 1.0$, MeOH); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.83-6.77(3 \mathrm{H}, \mathrm{m}), 5.94-5.90$ $(1 \mathrm{H}, \mathrm{m}), 5.77-5.72(1 \mathrm{H}, \mathrm{m}), 3.86(6 \mathrm{H}, \mathrm{s}), 3.58(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.30-3.26(2 \mathrm{H}$, m), 2.20-2.15 ($2 \mathrm{H}, \mathrm{m}$), 2.12-2.07 ($1 \mathrm{H}, \mathrm{m}$), $1.60-1.41(3 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.4,147.6,133.6,129.1,127.8,121.6,113.0$, 110.7, 77.4, 77.0, 76.6, 65.1, 55.8, 42.1, 40.8, 24.7, 20.7; HREIMS m / z $248.1413[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}, 248.1412$).
(1R,2S)-2-(3,4-Dimethoxyphenyl)cyclohex-3-enecarbaldehyde (7). To a solution of dimethyl sulfoxide ($1.3 \mathrm{~mL}, 18.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added dropwise oxalyl chloride ($1.6 \mathrm{~mL}, 18.3$ $\mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h , and $\mathbf{1 1}(1.5 \mathrm{~g}$, $6.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added. After stirring for 1 h at the same temperature, triethylamine was added. The reaction mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$, stirred for an additional 30 min , diluted with $\mathrm{H}_{2} \mathrm{O}$ $(50 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated. The residue was purified by flash column chromatography (EtOAc/hexane, 1:4) to give $8(1.41 \mathrm{~g}, 94 \%)$ as a white solid: mp $74^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}+247(c 1.0, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.50$ $(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 6.81-7.72(3 \mathrm{H}, \mathrm{m}), 6.00-5.97(1 \mathrm{H}, \mathrm{m}), 5.84-5.79$ $(1 \mathrm{H}, \mathrm{m}), 3.92(1 \mathrm{H}, \mathrm{s}), 3.85(6 \mathrm{H}, \mathrm{s}), 2.77-2.70(1 \mathrm{H}, \mathrm{m}), 2.33-2.09(2 \mathrm{H}$, m), 1.89-1.83 ($2 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.9,148.7$, 148.0, 132.5, 128.5, 128.0, 121.3, 122.5, 111.0, 55.8, 50.8, 41.1, 23.6, 18.8; HREIMS $m / z 246.1255[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}, 246.1256$).

3S-(3,4-Dimethoxyphenyl)-4S-[(E)-3,4-dimethoxystyryl]-cyclohex-1-ene (1). To a solution of dimethyl 3,4-dimethoxybenzylphosphonate ($\mathbf{1 2})^{10}(137 \mathrm{mg}, 0.53 \mathrm{mmol})$ in dry THF (3 mL) was added n-butyllithium (1.6 M in hexanes, $0.291 \mathrm{~mL}, 0.467 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and stirred for 20 min , and $7(100 \mathrm{mg}, 0.406 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ was then added. The mixture was stirred for an additional 2 h , diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$, and extracted with EtOAc $(20 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and concentrated. The residue was purified by flash column chromatography (EtOAc/hexane, 1:5) to give $\mathbf{1}(71 \mathrm{mg}$, 50%) as a white solid: $\mathrm{mp} 107^{\circ} \mathrm{C}\left(\right.$ lit. $\left.{ }^{1 \mathrm{~d}} \mathrm{mp} 99-99.5^{\circ} \mathrm{C}\right) ;[\alpha]^{25}{ }_{\mathrm{D}}+103$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.82-6.69(6 \mathrm{H}, \mathrm{m})$, $6.25(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}), 6.02-5.93(1 \mathrm{H}, \mathrm{m}), 5.84-5.76(1 \mathrm{H}, \mathrm{m}), 5.58$ $(1 \mathrm{H}, \mathrm{dd}, J=15.7,9.1 \mathrm{~Hz}), 3.86(3 \mathrm{H}, \mathrm{s}) 3.85(3 \mathrm{H}, \mathrm{s}), 3.83(3 \mathrm{H}, \mathrm{s}), 3.75$ $(3 \mathrm{H}, \mathrm{s}), 3.54-3.48(1 \mathrm{H}, \mathrm{m}), 2.96-2.64(1 \mathrm{H}, \mathrm{m}), 2.32-2.11(2 \mathrm{H}, \mathrm{m})$, $1.72-1.57(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 149.1, 148.4, 148.2, 147.7, 133.9, 132.6, 131.2, 129.3, 128.6, 128.2, 122.0, 118.9, 113.7, 111.3, 110.5, 108.8, 56.0, 55.9, 55.9, 45.9, 42.7, 24.9, 24.4; HREIMS m / z 380.1988 [M] ${ }^{+}$(calcd for $\mathrm{C}_{245} \mathrm{H}_{28} \mathrm{O}_{4}, 380.1988$).
(1S,2S)-2-(3,4-Dimethoxyphenyl)cyclohex-3-enecarbaldehyde (13). Potassium carbonate ($493 \mathrm{mg}, 3.57 \mathrm{mmol}$) was added to a solution of $7(0.8 \mathrm{~g}, 3.24 \mathrm{mmol})$ in $\mathrm{MeOH}(15 \mathrm{~mL})$, and the reaction mixture was stirred for 36 h at room temperature and then concentrated. The residue was diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, extracted with EtOAc (50 mL), dried over MgSO_{4}, and concentrated. The residue was purified by flash column chromatography (EtOAc/hexane, 1:10) to give 13 (650 $\mathrm{mg}, 81 \%$) as a colorless oil: $[\alpha]^{25}{ }_{\mathrm{D}}+168(c 1.0, \mathrm{MeOH})$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.69(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 6.82-6.74(3 \mathrm{H}, \mathrm{m}), 5.92-5.86$ $(1 \mathrm{H}, \mathrm{m}), 5.70-5.65(1 \mathrm{H}, \mathrm{m}), 3.86(6 \mathrm{H}, \mathrm{d}, J=3 \mathrm{~Hz}), 3.74-3.69(1 \mathrm{H}, \mathrm{m})$, $2.61-2.55(1 \mathrm{H}, \mathrm{m}), 2.18-2.17(2 \mathrm{H}, \mathrm{m}), 1.98-1.93(1 \mathrm{H}, \mathrm{m}), 1.81-1.71$ $(1 \mathrm{H}, \mathrm{m}),{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.0,149.0,147.8,136.1$, 129.1, 127.6, 120.2, 111.3, 111.2, 55.9, 55.8, 54.0, 41.0, 23.4, 21.0; HREIMS $m / z 246.1255[M]^{+}$(calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}, 246.1256$).

4-[(1S,6S)-6-Ethynylcyclohex-2-enyl]-1,2-dimethoxybenzene (14). Compound 14 was prepared from 13 in two steps (81%) by a reported method: ${ }^{11}$ white solid; mp $55^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}-187$ (c 1.0, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.79(3 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz})$, $5.91-5.87(1 \mathrm{H}, \mathrm{m}), 5.66-5.62(1 \mathrm{H}, \mathrm{m}), 3.87(6 \mathrm{H}, \mathrm{d}, J=3 \mathrm{~Hz})$, $3.40-3.36(1 \mathrm{H}, \mathrm{m}), 2.55-2.47(1 \mathrm{H}, \mathrm{m}), 2.20-2.18(2 \mathrm{H}, \mathrm{m})$, $2.06-1.95(2 \mathrm{H}, \mathrm{m}), 1.82-1.70(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.6,147.7,136.4,128.9,127.6,120.2,111.4,110.7,87.4,77.4,77.2$, 77.0, 76.6, 69.3, 55.8, 47.1, 34.5, 27.3, 23.8; HREIMS $m / z 242.1304$ $[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}, 242.1307$).

Tributyl $\{(E)$-2-[(1S,2S)-2-(3,4-dimethoxyphenyl)cyclohex-3-enyl]vinyl $\}$ stannane (15). 2,2'-Azobisisobutyronitrile (3 mg) was added to a solution of $\mathbf{1 4}(107 \mathrm{mg}, 0.44 \mathrm{mmol})$ and tributyltin hydride $(0.185 \mathrm{~mL}, 0.70 \mathrm{mmol})$ in toluene $(3 \mathrm{~mL})$. The mixture was heated to reflux for 6 h , diluted with EtOAc (10 mL), and washed with $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and concentrated. The residue was purified by flash column chromatography (EtOAc/ hexane, $1: 10$) to give $\mathbf{1 5}(197 \mathrm{mg}, 83 \%)$ as an inseparable E / Z mixture $(E / Z=4: 1):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.77-6.62(2.8 \mathrm{H}, \mathrm{m})$, $6.51-6.44(0.2 \mathrm{H} \mathrm{m}), 5.96-5.78(2 \mathrm{H}, \mathrm{m}), 5.74-5.59(2 \mathrm{H}, \mathrm{m}), 3.86$ $(2.4 \mathrm{H}, \mathrm{s}), 3.85(3 \mathrm{H}, \mathrm{s}), 3.83(0.6 \mathrm{H}, \mathrm{s}), 3.20-3.1 .7(0.2 \mathrm{H}, \mathrm{m}$, for $\mathrm{Z}-17)$, $3.15-3.09(0.8 \mathrm{H}, \mathrm{m}$, for $E-17), 2.28-2.14(3 \mathrm{H}, \mathrm{m}), 1.90-1.82(1 \mathrm{H}$, m), $1.68-1.61(14 \mathrm{H}, \mathrm{m}), 0.91-0.62(14 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.3,148.6,147.2,137.8,130.5,127.4,126.3,120.6,111.3$, $110.6,55.8,49.5,47.4,29.1,27.3,24.6,13.7,9.3$; HREIMS $m / z 478.1891$ $\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8}+1\right]^{+}$(calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Sn}, 478.1894$).

3S-(3,4-Dimethoxyphenyl)-4R-[(E)-3,4-dimethoxystyryl]-cyclohex-1-ene (3) and 17. To a solution of 15 ($780 \mathrm{mg}, 1.45 \mathrm{mmol}$), $16^{13}(504 \mathrm{mg}, 1.75 \mathrm{mmol})$, and $\mathrm{LiCl}(74 \mathrm{mg}, 1.75 \mathrm{mmol})$ in N methylpyrrolidone (5 mL) was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(340 \mathrm{mg}, 0.31 \mathrm{mmol})$. The reaction mixture was heated for 3 h , diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, and extracted with $\mathrm{EtOAc}(30 \mathrm{~mL})$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ $(2 \times 20 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated. The residue was purified by flash column chromatography (EtOAc/hexane, 1:5) to give a mixture of 3 and $17(430 \mathrm{mg}, 74 \%)$. The mixture of 3 and $17(430 \mathrm{mg})$ was subjected to semipreparative HPLC, using an isocratic mixture of hexane/ 2-propanol ($9: 1,1.5 \mathrm{~mL} / \mathrm{min}$) as solvent system, to afford $\mathbf{1 7}(16 \mathrm{mg})$ and 3 (226 mg).

3S-(3,4-Dimethoxyphenyl)-4R-[(E)-3,4-dimethoxystyryl]-cyclohex-1-ene (3): yellow gum; $[\alpha]_{\mathrm{D}}^{25}+260(c 0.13, \mathrm{MeOH})$; CD (c $0.34 \mathrm{mM}, \mathrm{MeOH}) \Delta \varepsilon_{230}+7.4, \Delta \varepsilon_{255}+10.9, \Delta \varepsilon_{267}+11.6, \Delta \varepsilon_{283}$ $+10.0 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.81\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-2^{\prime \prime \prime}\right), 6.78(1 \mathrm{H}$, $\left.\mathrm{dd}, J=9.1,2.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime \prime}\right), 6.77\left(2 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime \prime \prime}\right), 6.72$ $\left(1 \mathrm{H}, \mathrm{dd}, J=9.1,2.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 6.70\left(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.10(1 \mathrm{H}, \mathrm{d}$, $\left.J=16.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right), 6.02\left(1 \mathrm{H}, \mathrm{dd}, J=16.0,6.8 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right), 5.89(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ $=10.0 \mathrm{~Hz}, \mathrm{H}-1), 5.68(1 \mathrm{H}, \mathrm{dd}, J=10.0,2.6 \mathrm{~Hz}, \mathrm{H}-2), 3.87(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.18(1 \mathrm{H}, \mathrm{dd}, J=8.4,2.6 \mathrm{~Hz}, \mathrm{H}-3), 2.35(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-4), 2.21$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), $1.93(1 \mathrm{H}, \mathrm{dd}, J=12.8,3.2 \mathrm{~Hz}, \mathrm{H}-5), 1.66(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5)$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 149.0\left(\mathrm{C}-4^{\prime}\right), 148.6$ (C-4"') $) 148.3$ (C$3^{\prime \prime \prime}$), 147.4 (C-3'), 137.6 (C-1'), 132.2 (C-1"), 131.0 (C-1 $1^{\prime \prime \prime}$), 130.3 (C2), 129.0 (C-2"), 127.6 (C-1), 120.5 (C-6'), 118.9 (C-6"' ${ }^{\prime \prime}$), 111.8 (C$\left.2^{\prime}\right), 111.3\left(\mathrm{C}-5^{\prime \prime \prime}\right), 111.0\left(\mathrm{C}-5^{\prime}\right), 108.8\left(\mathrm{C}-2^{\prime \prime \prime}\right), 56.0\left(\mathrm{OCH}_{3}\right), 55.9$ $\left(\mathrm{OCH}_{3}\right), 55.8\left(\mathrm{OCH}_{3}\right), 55.8\left(\mathrm{OCH}_{3}\right), 48.1(\mathrm{C}-3), 45.5(\mathrm{C}-4), 28.0$ (C-5), 24.6 (C-6); HRESIMS (positive mode) $m / z 381.2060[\mathrm{M}+\mathrm{H}]^{+}$ (calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{O}_{4}, 381.2060$).

3S-(3,4-Dimethoxyphenyl)-4R-[(Z)-3,4-dimethoxystyryl]-cyclohex-1-ene (17): yellow gum; $[\alpha]^{25}{ }_{\mathrm{D}}-24.3(c 0.18, \mathrm{MeOH})$; $\mathrm{CD}(c 0.47 \mathrm{mM}, \mathrm{MeOH}) \Delta \varepsilon_{230}+4.4, \Delta \varepsilon_{250}-6.6, \Delta \varepsilon_{274}-4.4{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.73\left(1 \mathrm{H}, \mathrm{d}, J=8.0, \mathrm{H}-5^{\prime}\right), 6.70(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}$, $\left.\mathrm{H}-5^{\prime \prime \prime}\right), 6.65\left(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.2 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 6.56(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}$, $\left.\mathrm{H}-2^{\prime}\right), 6.43\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-2^{\prime \prime \prime}\right), 6.42\left(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime \prime}\right), 6.27$ ($1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}$), $5.84(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=10.0,3.0 \mathrm{~Hz}, \mathrm{H}-1), 5.65$ $(1 \mathrm{H}, \mathrm{dd}, J=10.0,2.3 \mathrm{~Hz}, \mathrm{H}-2), 5.51\left(1 \mathrm{H}, \mathrm{dd}, J=11.6,10.8 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right)$,
$3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.73(3 \mathrm{H}$, s, $\left.\mathrm{OCH}_{3}\right), 3.14(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}, \mathrm{H}-3), 2.84(1 \mathrm{H}, \mathrm{ddd}, J=10.8$, $8.6,2.8 \mathrm{~Hz}, \mathrm{H}-4), 2.17(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 1.83(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=12.8,2.8 \mathrm{~Hz}$, $\mathrm{H}-5), 1.64(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 149.1$ (C-3 ${ }^{\prime \prime \prime}$), 148.8 ($\left.\mathrm{C}-4^{\prime}\right), 148.5$ (C-4 $\left.4^{\prime \prime \prime}\right), 147.5\left(\mathrm{C}-3^{\prime}\right), 137.8\left(\mathrm{C}-1^{\prime}\right), 135.9$ (C-1"), 130.6 ($\left.\mathrm{C}-1^{\prime \prime \prime}\right), 130.5$ (C-2), 128.5 ($\left.\mathrm{C}-2^{\prime \prime}\right), 127.3$ (C-1), 120.8 (C-6 ${ }^{\prime \prime \prime}$), 120.3 ($\left.\mathrm{C}-6^{\prime}\right), 111.7\left(\mathrm{C}-2^{\prime \prime \prime}\right), 111.3\left(\mathrm{C}-2^{\prime}\right), 110.8\left(\mathrm{C}-5^{\prime}\right), 110.7$ $\left(\mathrm{C}-5^{\prime \prime \prime}\right), 56.9\left(\mathrm{OCH}_{3}\right), 56.9\left(\mathrm{OCH}_{3}\right), 56.8\left(\mathrm{OCH}_{3}\right), 56.8\left(\mathrm{OCH}_{3}\right), 48.1$ (C-3), 40.7 (C-4), 28.6 (C-5), $24.4(\mathrm{C}-6) ;{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC correlations $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \mathrm{H}-5^{\prime} / \mathrm{C}-6^{\prime}, \mathrm{C}-1^{\prime}$; C-4' ${ }^{\prime} \mathrm{H}-5^{\prime \prime \prime} / \mathrm{C}-1^{\prime \prime \prime} ; \mathrm{H}-6^{\prime} / \mathrm{C}-2^{\prime}$, $\mathrm{C}-4^{\prime}, \mathrm{C}-3 ; \mathrm{H}-2^{\prime} / \mathrm{C}-3, \mathrm{C}-6^{\prime}, \mathrm{C}-3^{\prime}, \mathrm{C}-4^{\prime}$; $\mathrm{H}-2^{\prime \prime \prime} / \mathrm{C}-6^{\prime \prime \prime}, \mathrm{C}-2^{\prime \prime}, \mathrm{C}-1^{\prime \prime \prime}, \mathrm{C}-3^{\prime \prime \prime}$, $\mathrm{C}-4^{\prime \prime \prime} ; \mathrm{H}-6^{\prime \prime \prime} / \mathrm{C}-2^{\prime \prime \prime}, \mathrm{C}-4^{\prime \prime \prime} ; \mathrm{H}-2^{\prime \prime} / \mathrm{C}-4, \mathrm{C}-1^{\prime \prime}, \mathrm{C}-2^{\prime \prime \prime}, \mathrm{C}-6^{\prime \prime \prime}, \mathrm{C}-1^{\prime \prime \prime} ; \mathrm{H}-1 /$ $\mathrm{C}-2 ; \mathrm{H}-2 / \mathrm{C}-6, \mathrm{C}-4, \mathrm{C}-3, \mathrm{C}-1 ; \mathrm{H}-1^{\prime \prime} / \mathrm{C}-5, \mathrm{C}-4, \mathrm{C}-3, \mathrm{C}-2, \mathrm{C}-1^{\prime \prime \prime} ; \mathrm{OCH}_{3} /$ $\mathrm{C}-4^{\prime \prime \prime} ; \mathrm{OCH}_{3} / \mathrm{C}-3^{\prime} ; \mathrm{OCH}_{3} / \mathrm{C}-4^{\prime} ; \mathrm{OCH}_{3} / \mathrm{C}-3^{\prime \prime \prime} ; \mathrm{H}-3 / \mathrm{C}-1, \mathrm{C}-2 ; \mathrm{H}-4 / \mathrm{C}-$ $2^{\prime \prime}, \mathrm{C}-1^{\prime \prime}$; H-6/C-1, C-2; H-5/C-1, C-1" ; HRESIMS (positive mode) $\mathrm{m} /$ $z 381.2060[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{O}_{4}, 381.2060$).

Biological Assays. Biological assays were conducted according to published protocols. ${ }^{3}$ In brief, MCF-7/ADR cells were cultured in RPMI 1640 supplemented with 10% FBS, 2 mM L-glutamine, 10 mM HEPES, $24 \mathrm{mM} \mathrm{NaHCO}_{3}$, and 1% antibiotic-antimycotic agent and maintained at $37^{\circ} \mathrm{C}$ in a humidified $5 \% \mathrm{CO}_{2}$ atmosphere. In order to examine the effects of phenylbutenoid dimers on daunomycin cytotoxicity, the cells (5000 cells/well) were seeded in 96 -well plates and incubated for 24 h at $37^{\circ} \mathrm{C}$. Then, daunomycin was added to each well to achieve final concentrations of 1.0×10^{-7} to $1.0 \times 10^{-4} \mathrm{M}$ with and without $50 \mu \mathrm{M}$ phenylbutenoid dimers 3 , ent-3, and 17 , followed by incubation for 2 h . Daunomycin containing $50 \mu \mathrm{M}$ verapamil was used as the positive control. After the cells were washed and maintained with $200 \mu \mathrm{~L}$ of fresh media for 72 h , the cytotoxicity of daunomycin was determined using a modification of a SRB staining assay. ${ }^{14}$

■ ASSOCIATED CONTENT

(s) Supporting Information. Experimental procedures for the preparation of compounds ent-3, 10, 12, 14, 15, and 16, copies of NMR spectra of 1,3 , ent-3, 7, 8 , and $10-17$, and CD spectra of 3, ent-3, and 17. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

*Tel: +82-42-860-7150 (H.-J.L.); +82-2-3277-3047 (E.-K.S.). Fax: +82-42-861-1291 (H.-J.L.); +82-2-3277-3051 (E.-K.S.). E-mail: heejong@krict.re.kr (H.-J.L.); Yuny@ewha.ac.kr (E.-K.S.).

- ACKNOWLEDGMENT

This study was supported in part by the NCRC program of MEST/KOSEF (Grant R15-2006-020) through the Center for Cell Signaling and Drug Discovery Research at Ewha Womans University.

- REFERENCES

(1) (a) Mori, I.; Nakachi, Y. Tetrahedron Lett. 1978, 26, 2297-2298. (b) Amatayakul, T.; Cannon, J. R.; Dampawan, P.; Dechatiwongse, T.; Giles, R. G. F.; Huntrakul, C.; Kusamuran, K.; Mokkhasamit, M.; Raston, C. L.; Reutrakul, V.; White, A. H. Aust. J. Chem. 1979, 32, 71-88. (c) Kuroyanagi, M.; Fukushima, S.; Yoshihira, K.; Natori, S.; Dechatiwongse, T.; Mihashi, K.; Nishi, M.; Har, S. Chem. Pharm. Bull. 1980, 28, 2948-2959. (d) Jitoe, A.; Masuda, T.; Kato, S.; Nakatani, N. Phytochemistry 1993, 32, 357-363. (e) Masuda, T.; Andoh, T.; Yonemori, S.; Takeda, Y. Phytochemistry 1999, 50, 163-166. (f) Han, A.-R.; Min, H.-Y.; Windono, T.; Jeohn, G.-H.; Jand, D. S.; Lee, S. K.; Seo, E.-K. Planta

Med. 2004, 70, 1095-1097. (g) Nakamura, S.; Iwami, J.; Matsuda, H.; Wakayama, H.; Pongpiryadacha, Y.; Yoshikawa, M. Chem. Pharm. Bull. 2009, 57, 1267-1272.
(2) Nakamura, S.; Iwami, J.; Matsuda, H.; Wakayama, H.; Pongpiryadacha, Y.; Yoshikawa, M. Chem. Pharm. Bull. 2009, 57, 1267-1272.
(3) Chung, S. Y.; Han, A.-R.; Sung, M. K.; Jung, H. J.; Nam, J.-W.; Seo, E.-K.; Lee, H. J. Phytother. Res. 2009, 23, 472-476.
(4) Han, A.-R.; Kim, M.-S.; Jeong, Y. H.; Lee, S. K.; Seo, E.-K. Chem. Pharm. Bull. 2005, 53, 1466-1468.
(5) Lee, J.-W.; Min, H.-Y.; Han, A.-R.; Chung, H.-J.; Park, E.-J.; Park, H. J.; Hong, J. -Y.; Seo, E.-K.; Lee, S. K. Biol. Pharm. Bull. 2007, 30, 1561-1564.
(6) Mulzer, J.; Kuhl, U.; Huttner, G.; Evertz, K. Chem. Ber. 1988, 121, 2231-2238.
(7) Tuntiwachwuttikul, P.; Limchawfar, B.; Reutrakul, V.; Panchroen, O.; Kusamran, K.; Byrne, L. T. Aust. J. Chem. 1980, 33, 913-916.
(8) Evans, D. A.; Barnes, D. M.; Johnson, J. S.; Lectka, T.; Matt, P.; Miller, S. J.; Murry, J. A.; Norcross, R. D.; Shaughnessy, E. A.; Campos, K. R. J. Am. Chem. Soc. 1999, 121, 7582-7594.
(9) Ho, G.-J.; Mathre, D. J. J. Org. Chem. 1995, 60, 2271-2273.
(10) Smyth, M. S.; Stefanova, I.; Hartmann, F.; Horak, I. D.; Osherov, N.; Levitzki, A.; Burke, T. R., Jr. J. Med. Chem. 1993, 36, 3010-3014.
(11) (a) Ramirez, F.; Desal, N. B.; McKelvie, N. J. Am. Chem. Soc. 1962, 84, 1745. (b) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 36, 3769.
(12) (a) Corey, E. J.; Wollenberg, R. H. J. Org. Chem. 1975, 40, 2265-2266. (b) Betzer, J.-F.; Delaloge, F.; Benoit Muller, B.; Pancrazi, A.; Prunet, J. J. Org. Chem. 1997, 62, 7768-7780.
(13) Mori, A.; Mizusaki, T.; Ikawa, T.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Tetrahedron 2007, 63, 1270-1280.
(14) Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J. T.; Bokesch, H.; Kenney, S.; Boyd, M. R. J. Natl. Cancer Inst. 1990, 82, 1107-111.

[^0]: Received: December 24, 2010
 Published: July 19, 2011

